Fighting antibiotic-resistant superbugs with anti-persister compounds targeting the stringent response
Therapeutics
- Abel Garcia-Pino, Université Libre de Bruxelles, Belgium (Coordinator)
- Leonardo Pardo, Universitat Autònoma de Barcelona, Spain (Partner)
- Ewa Laskowska, University of Gdansk, Poland (Partner)
- Olivier Neyrolles, Université de Toulouse, France (Partner)
- Laurance Van Melderen, Université Libre de Bruxelles, Belgium (Observer)
Since the discovery of penicillin by Fleming in the late 1920s, antibiotics have revolutionized the field of medicine and human society in general. However, the antibiotic development pipeline dried out in the late 1980s and we have now reached a critical point where many antibiotics are no longer effective against even the simplest infections. In this context, infectious diseases are now the second leading cause of death in the world with 17 million people dying each year from bacterial infections worldwide. Pathogenic antibiotic-resistant “superbugs” are a particularly problematic emergent global health threat growing at an alarming pace. These superbugs are typically highly antibiotic tolerant and multi-drug resistant. One of the survival strategies of these pathogens is to enter in a seemingly “dormant” state that suspends cell division known as persister state. Disguised as persisters, bacteria become highly tolerant to antibiotics and stress in general, therefore targeting persisters has become one of the modern challenges of microbiology. These non-growing bacteria are encountered in a variety of chronic pathologies, including cystic fibrosis, pneumonia and tuberculosis (TB). Thus the impact of persistence on public health is thus enormous and there is a pressing need to develop treatments to kill persisters. It has been previously shown that a strategy that addresses the persistence problem is a promising approach in the fight against multi-drug resistant superbugs. Therefore this project aims to target key steps in the mechanisms of pathogenic bacteria to regulate stress that are involved in persistence from integrative biochemistry-, structural and cellular biology-based perspective to discover novel compounds that could lead to the development of new types of antibiotics.
- Front Microbiol, 2020. The C-Terminal RRM/ACT Domain Is Crucial for Fine-Tuning the Activation of ‘Long’ RelA-SpoT Homolog Enzymes by Ribosomal Complexes
- Nature Chemical Biology, 2022. Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint
- Nature Chemical Biology, 2024. Mechanisms of neutralization of toxSAS from toxin–antitoxin modules
- Nucleic Acids Res, 2021. Ribosome association primes the stringent factor Rel for tRNA-dependent locking in the A-site and activation of (p)ppGpp synthesis.
- Acta Crystallogr F Struct Biol Commun, 2019. The Rel stringent factor from Thermus thermophilus: crystallization and X-ray analysis.
- Nature Chemical Biology, 2024. Mechanisms of neutralization of toxSAS from toxin–antitoxin modules
- Mol Cell, 2021. RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis.
- Nature Chemical Biology, 2020. A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes
- Acta Crystallogr F Struct Biol Commun, 2019. The Rel stringent factor from Thermus thermophilus: crystallization and X-ray analysis
- Research Square, 2022. The structure of SpoT reveals evolutionary tuning of enzymatic output through constraint of the conformational landscape
- Nature Communications, 2023. A polyamine acetyltransferase regulates the motility and biofilm formation of Acinetobacter baumannii
- Research Square, 2023. Coupling between substrate specificity and neutralisation mechanisms in toxic Small Alarmone Synthetases
- Mol Cell, 2021. (p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains.
- ACS Chem Biol, 2021. Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools.
- Nature, 2022. Direct activation of a bacterial innate immune system by a viral capsid protein.
- Sci Adv, 2023. The structure of DarB in complex with RelNTD reveals nonribosomal activation of Rel stringent factors.